Ticker

6/recent/ticker-posts

Program to find shortest path using dijkstra algorithm c code

 #include <stdio.h>

#include <limits.h>

// Number of vertices in the graph

#define V 9

// A utility function to find the vertex with minimum distance value, from

// the set of vertices not yet included in shortest path tree

int minDistance(int dist[], int sptSet[]) {

    // Initialize min value

    int min = INT_MAX, min_index;

    int v;

    for (v = 0; v < V; v++)

        if (sptSet[v] == 0 && dist[v] <= min)

            min = dist[v], min_index = v;

 

    return min_index;

}

 

// A utility function to print the constructed distance array

void printSolution(int dist[], int n) {

    printf("Vertex Distance from Source\n");

    int i;

    for (i = 0; i < V; i++)

        printf("%d \t\t %d\n", i, dist[i]);

}

 

// Funtion that implements Dijkstra's single source shortest path algorithm

// for a graph represented using adjacency matrix representation

void dijkstra(int graph[V][V], int src) {

    int dist[V]; // The output array. dist[i] will hold the shortest

    // distance from src to i

 

    int sptSet[V]; // sptSet[i] will 1 if vertex i is included in shortest

    // path tree or shortest distance from src to i is finalized

 

    // Initialize all distances as INFINITE and stpSet[] as 0

    int i, count, v;

    for (i = 0; i < V; i++)

        dist[i] = INT_MAX, sptSet[i] = 0;

 

    // Distance of source vertex from itself is always 0

    dist[src] = 0;

 

    // Find shortest path for all vertices

    for (count = 0; count < V - 1; count++) {

        // Pick the minimum distance vertex from the set of vertices not

        // yet processed. u is always equal to src in first iteration.

        int u = minDistance(dist, sptSet);

 

        // Mark the picked vertex as processed

        sptSet[u] = 1;

 

        // Update dist value of the adjacent vertices of the picked vertex.

        for (v = 0; v < V; v++)

 

            // Update dist[v] only if is not in sptSet, there is an edge from

            // u to v, and total weight of path from src to v through u is

            // smaller than current value of dist[v]

            if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u]

                    + graph[u][v] < dist[v])

                dist[v] = dist[u] + graph[u][v];

    }

 

    // print the constructed distance array

    printSolution(dist, V);

}

 

// driver program to test above function

int main() {

    /* Let us create the example graph discussed above */

    int graph[V][V] = {{0, 2, 0, 0, 0, 0, 0, 5, 0},

                        {5, 0, 9, 0, 0, 0, 0, 11, 0},

                        {0, 2, 0, 7, 0, 4, 0, 0, 2},

                        {0, 0, 1, 0, 9, 14, 0, 0, 0},

                        {0, 0, 0, 4, 0, 10, 0, 0, 0},

                        {0, 0, 2, 0, 10, 0, 2, 0, 0},

                        {0, 0, 0, 1, 0, 2, 0, 1, 6},

                        {9, 11, 0, 0, 0, 0, 1, 0, 7},

                        {0, 0, 1, 0, 0, 0, 6, 7, 0}

                       };

 

    dijkstra(graph, 0);

    return 0;

}

Output

Vertex Distance from Source

0   0

1   2

2    8

3    7

4   16

5    8

6    6

7     5

8    10


Post a Comment

0 Comments