Ticker

6/recent/ticker-posts

Minima and Maxima of function questions and solution

 Q1. Let f(x)=3x^3-7x^2+5x+6.The maximum value of f(x) over the interval [0,2] is

Solution 

f(x)=3x^3-7x^2+5x+6.

f'(x)=9x^2-14x+5=0

=9x^2-9x-5x+5=0

=9x(x-1)-5(x-1)=0

So x=1,5/9

f"(x)=18x-14

f"(1)=18(1)-14=4>0 at point 1 function is minima

f"(5/9)=18(5/9)-14=-4<0

so point 5/9 function is maxima

Value at point 5/9

f(5/9)=3(5/9)^3-7(5/9)^2+5(5/9)+6

=7.1

Value at point 0 f(0)=3(0)^3-7(0)^2+5(0)+6

=0

Value at point 2

f(2)=3(2)^3-7(2)^2+5(2)+6

=12

So maximum value is 12 at point 2.


Q2. At the point x=0 the function f(x)=x^3 has what value local maxima or minima

Solution

f(x)=x^3

f'(x)= 3x^2

At value x =0

f'(x)=0

f"(x)=6x

At point x=0

f"(x)=0

f"'(x)=6

6 not equal to 0 

So saddle point exit neither maxima neither minima

Q3.The minimum value of the function f(x)=(x^3/3)-x  at point point

Solution 

f(x)=(x^3/3)-x

f'(x)=3x^2/3-1

f'(x)=x^2-1

So x^2=1

So x=-1,+1


f"(x)=2x

At point 1

=2>0

At point -1

=-2<0

Because 2 is greater than 0 so minimum value of function at point 1.

Q4. The function f(x)=2x^3-3x^2 in the domain [-1,2].The global minimum of f(x) is

Solution 

f(x)=2x^3-3x^2

f'(x)=6x^2-6x=0

=6x(x-1)=0

=x=0,1

f"(x)=12x-6

f"(0)=-6 <0

So function is maxima at point 0


f"(1)=12-6=6>0

f(1)=2(1)^3-3(1)^2=-1

f(-1)=-2-3=-5

f(2)=16-12=4


So global minimum value is -5 at point 1 .

Q5.Let f[-1,1]->R where f(x)=2x^3-x^4-10 .The minimum value of f(x) is

Solution 

f(x)=2x^3-x^4-10

f'(x)=6x^2-4x^3=0

x^2(6-4x)=0

x=0,3/2

f"(x)=12x-12x^2

f"(0)=12(0)-12(0)^2

f"(0)=0

f"'(0)=12-24x 

f"'(0) value is not equal to zero so saddle point at point 0.

Point 3/2 is not in function range f[-1,1].

f(-1)=2(-1)^3-(-1)^4-10

=-13

f(1)=2(1)^3-(1)^4-10

=2-1-10

=-9

The minimum value of f(x) is -13

Post a Comment

0 Comments