Ticker

6/recent/ticker-posts

Determinant question and solution

 Q1 Evaluate the determinant 

            A=      2      4

                     −5.   −1

Solution

= (2 × (−1)) − (4 × (−5))

= −2 + 20 = 18

Q2. Evaluate the determinants

     

        A=3    −1    −2

            0     0      −1

            3.   −5       0


Solution

 = 3(0 − 5) + 1(0 + 3) − 2(0 − 0) = −15 + 3 − 0 = −12

Q3.Find values of 𝑥, if determinant of matrix A is equal to determinant of B

A=2    4. 

    5.    1


B=  2𝑥     4

       6.     𝑥

Solution

Determinant of A

=2-20=-18

Determinant of B

=2x^2-24

Determinant of A=Determinant of B

-18=2x^2-24

-18+24=2x^2

6=2x^2

x=+-√3

Q4 Find area of the triangle with vertices at the point given in each of the following:

(1, 0), (6, 0), (4, 3)

Solution 

We know, area of triangle


1/2[𝑥1  𝑦1     1

      𝑥2.  𝑦2.    1

     𝑥3.    𝑦3    1]

Area of triangle =

1/2[1 0 1

       6 0 1

       4 3 1]

=

1/2[1(0 − 3) − 0(6 − 4) + 1(18 − 0)] 

=1/2(15) = 7.5 square units


Q5 Find equation of line joining (1, 2) and (3, 6) using determinants.


Solution

Let, 𝑃(𝑥, 𝑦) be any point lie on the line joining 𝐴(1, 2) and 𝐵(3, 6). Hence, the points 𝐴, 𝐵

and 𝑃 will be collinear and area of triangle 𝐴𝐵𝐶 will be zero.

Therefore, area of triangle =

1/2[1 2 1

       3 6 1

       𝑥 𝑦 1]=0

1/2[1(6 − 𝑦) − 2(3 − 𝑥) + 1(3𝑦 − 6𝑥)] = 0

⇒ 6 − 𝑦 − 6 + 2𝑥 + 3𝑦 − 6𝑥 = 0

⇒ −4𝑥 + 2𝑦 = 0

⇒ 2𝑥 = 𝑦

Hence the equation of line joining the points (1, 2) and (3, 6) is 2𝑥 − 𝑦 = 0





Post a Comment

0 Comments