Q1 For the function f(x)= x^2. if 0<=x<2
3x-2. if 2<=x<=4
x^3. if. x>4
Check continuity at x=0. and x=2.
Solution
Limit at x<0
Limit x<0 not exist so function is not continuous at x=0.
Limit x<2
x^2
2^2=4
Limit at x=2
3x-2
3*2-2=4
Limit at x>2
3x-2
3*2-2=4
Left hand limit x<2 is equal to right hand limit x>2 and x=2
So function is continuous at x=2.
Q2. The given function f(x)=k(x^2+2) if x<=0
4x+6. if x>0
If f(x) is continuous at x=0 find the value of k.
Solution
Left hand limit
At x<0
k(x^2+2)
=2k
Right hand limit
At x>0
4x+6
=6
If function is continuous at x=0 so left hand limit equal to the right hand limit.
2k=6
k=3
Q3. f(x)=kx+1 if x<=Ï€
cosx. If x>Ï€
Is continuous at x=Ï€ .find the value of k.
Solution
Left hand limit
x<Ï€
kx+1
kπ+1
Right hand limit
x>Ï€
cosx
=cosπ
=-1
If function is continuous at x=Ï€ .so left hand limit equal to the right hand limit.
kπ+1=-1
kπ=-2
K=-2/Ï€
Q4. f(x)=k(x^2+2). if x<=0
3x+1. if. x>0
Function is continuous at x=0 find the value of k.
Solution
Left hand limit
x<0
k(x^2+2)
k(2)
=2k
Right hand limit
x>0
3x+1
=1
If function is continuous at x=0 so left hand limit equal to the right hand limit.
2k=1
k=1/2
0 Comments