Q1Quick sort recurrence relation is T(n)=T(n-1)+n find worst case time complexity .
T(n)=T(n-1)+n Find T(n-1) T(n-1)=T(n-1-1)+n-1 T(n-1)=T(n-2)+n-1 Put the value of T(n-1) in T(n) T(n)=T(n-2)+n-1+n T(n)=T(n-2)+2n-1 ... In general T(n)=T(n-k)+nk-1 Let n-k=0 k=n Put the value of k T(n)=T(n-n)+n*n-1 T(n)=T(0)+n^2-1 T(n)=1+n^2-1 T(n)=n^2 So time complexity of quick sort=O(n^2)
Q2.Linear search recurrence relation is T(n)=T(n-1)+1 find worst case time complexity .
T(n)=T(n-1)+1 Find T(n-1) T(n-1)=T(n-1-1)+1 T(n-1)=T(n-2)+1 Put the value of T(n-1) in T(n) T(n)=T(n-2)+1+1 T(n)=T(n-2)+2 ... In general T(n)=T(n-k)+k Let n-k=0 k=n Put the value of k T(n)=T(n-n)+n T(n)=T(0)+n T(n)=1+n T(n)=n So time complexity of linear search=O(n)
Q3.Fibonnaci series recurrence relation is T(n)=T(n-1)+T(n-2)+c find worst case time complexity .
T(n)=T(n-1)+T(n-2)+c Let T(n-1)==T(n-2) T(n)=2T(n-1)+c Find T(n-1) T(n-1)=2T(n-1-1)+c T(n-1)=2T(n-2)+c Put the value of T(n-1) in T(n)=2(2T(n-2)+c)+c T(n)=4T(n-2)+2c+c T(n)=2^2*T(n-2)+3c ... In general T(n)=2^k*T(n-k)+(k+1)c Let n-k=0 So k=n Put the value of k T(n)=2^nT(0)+(n+1)c So worst case time complexity of Fibonacci series=O(2^n)
Q4.Tower of hanoi recurrence relation is T(n)=2T(n-1)+1 find worst case time complexity .
T(n)=2T(n-1)+1 Find T(n-1) T(n-1)=2T(n-1-1)+1 T(n-1)=2T(n-2)+1 Put the value of T(n-1) in T(n)=2(2T(n-2)+1)+1 T(n)=4T(n-2)+2+1 T(n)=2^2*T(n-2)+3 ... In general T(n)=2^k*T(n-k)+(k+1) Let n-k=0 So k=n Put the value of k T(n)=2^nT(0)+(n+1) So worst case time complexity of tower of Hanoi is series=O(2^n)
Q5 Factorial recurrence relation is T(n)=T(n-1)+c find worst case time complexity .
T(n)=T(n-1)+c T(n-1)=T(n-1-1)+c Put the value of T(n-1) T(n)=T(n-2)+2c In general term T(n)=T(n-k)+kc n-k=0 n=k T(n)=T(0)+kc T(n)=1+nc T(n)=O(n)
0 Comments